
Narayana: Java library
for transaction processing
DevConf CZ 2021

Ondra Chaloupka

Goal:

Schedule:

Overview of Narayana
capabilities

Presenting each module
in few words

Transaction
=

unit of work
3

Transaction
library/manager

=
makes model working

4

Transaction “model”
=

provides guarantees
5

Narayana: Java library for transaction processing

▸ Java library and framework for transaction processing

･ https://narayana.io

･ https://github.com/jbosstm/narayana

･ https://groups.google.com/forum/#!forum/narayana-users

▸ Integrated in various projects

･ WildFly application runtime

･ Quarkus application framework

･ Apache Tomcat server

･ Apache Camel

･ Spring framework

https://narayana.io/
https://github.com/jbosstm/narayana
https://groups.google.com/forum/#!forum/narayana-users
https://github.com/wildfly/wildfly/tree/22.0.1.Final/transactions
https://quarkus.io/guides/transaction
https://github.com/web-servers/narayana-tomcat
https://tomd.xyz/camel-xa-transactions-checklist/
https://github.com/snowdrop/narayana-spring-boot

Transaction Manager

Thief task Warrior task

Cloak
resource

Picklocking
resource

Warhammer
resource

Unit of work

Guarantees
for transactional work

Transaction library

Narayana: OTS/JTS transactions

▸ OTS (Object Transaction Service) standard

･ Part of the ecosystem of the ORB services

▸ OTS defines operations as methods on objects

･ Using IIOP as the communication protocol

▸ JTS (Java Transaction Service)

･ Specification for transactional interoperability between EJB containers

based on CORBA, OTS and JTA

OTS Naming service Transaction Manager

Thief service
Warrior service

Cloak resource

resource

Narayana: OTS/JTS transactions

module cz {
 module devconf2021 {
 /*
Implicit transaction propogation characteristics
 */
 interface Thief:
CosTransactions::TransactionalObject
 {
 /*

 Under transactional control.
 */
 void help_me_warrior();
 };
 };
};

OTD idl

Narayana: OTS/JTS transactions

module cz {
 module devconf2021 {
 /*
Implicit transaction propogation characteristics
 */
 interface Thief:
CosTransactions::TransactionalObject
 {
 /*

 Under transactional control.
 */
 void help_me_warrior();
 };
 };
};

service Foo {
 rpc Bar(FooRequest) returns(FooResponse);
}

OTD idl protobuf idl

Narayana: OTS/JTS transactions : Summary

▸ ORB transactional framework to build on top of

▸ IIOP messages that services communicate with each other

▸ WildFly integrates JTS with EJB 2

･ Integrates with JTA

▸ “Ancient” with respect to current software development

Narayana: JTA transactions

▸ JTA (Java Transaction API)

･ distributed transactions

･ X/Open XA standard uses XA resources

･ on behalf of two-phase commit protocol

▸ Well-known and heavily used

▸ Integrated with EJB and CDI in application runtimes

･ Mostly transparent to developers

Application Runtime Transaction Manager

Thief
component

Warrior
component

Cloak database

Lockpicking
3rd party resource

Narayana: JTA transactions : Summary

▸ Java API to work with XA transactions / 2-phase commit protocol

▸ Heavily used

▸ Integrated to various runtime

▸ Transparent for developer

Narayana: Software Transactional Memory

▸ STM (Software Transactional Memory)

▸ A concurrency models which uses shared memory

▸ An alternative to the lock-based synchronization approach

▸ Grouping memory operations to run them atomically

Lockpinging resource

Narayana: Software Transactional Memory

int x = 0, y = 0, z = 0;

void first {
 synchronized(this) {
 x = x + z;
 }
}

void second {
 synchronized(this) {
 y = y + z;
 }
}

void third {
 synchronized(this) {
 x = x + 1;
 y = y + 1;
 z = z + 1;
 }
}

Narayana: Software Transactional Memory

int x = 0, y = 0, z = 0;

void first {
 atomic (this) {
 x = x + z;
 }
}

void second {
 atomic(this) {
 y = y + z;
 }
}

void third {
 atomic (this) {
 x = x + 1;
 y = y + 1;
 z = z + 1;
 }
}

Narayana: Software Transactional Memory

Handle Memory

Narayana: Software Transactional Memory : Summary

▸ optimistic locking approach for in-VM mutual exclusion

Narayana: Long Running Actions

▸ LRA (Long Running Actions)

･ MicroProfile specification proposal

https://github.com/eclipse/microprofile-lra

▸ REST services

･ JAX-RS integration

･ Communication over HTTP

▸ Saga pattern

･ Not ACID - only ACD (atomicity, consistency, durability)

･ Part of responsibility moved to the service

･ Complete/Compensate callbacks

https://github.com/eclipse/microprofile-lra

Transaction Manager
/ LRA Coordinator
(REST API)

Thief service Warrior service

Cloak database

Warhammer database

Narayana: Long Running Actions : Summary

▸ Annotations to declare the processing

▸ Saga pattern

▸ Business logic takes responsibility for compensation

▸ Services communicates with HTTP (JAX-RS)

▸ Session A different flavor of the distributed transaction

･ Saturday, February 20, 9:45 am

https://devconfcz2021.sched.com/event/gmMS/a-different-flavor-of-the-distributed-transaction

Narayana: XML Transaction Service

▸ XTS (XML Transaction Service)

･ Transaction specification for JAX-WS (SOAP based web services)

▸ WS-AT (WS Atomic Transaction)

･ Atomic transactions with ACID guarantees

･ Capability of bridging JTA transactions to WS-AT

▸ WS-BA (WS Business Activity)

･ Saga based processing

▸ With WS-AT the JTA transaction may be spanned over multiple services

Transaction
Manager

Thief
component Warrior

component

Transaction
Manager

Cloak database

Warhammer database

Narayana: XML Transaction Service : Summary

▸ Transaction over JAX-WS - SOAP based web services

▸ WS-AT for fully ACID / JTA transactions

▸ WS-BA for saga based approach

Narayana: REST Atomic Transactions

▸ REST-AT (Rest Atomic Transactions)

･ Narayana protocol for handling transaction context

over RESTful Web Services

▸ Spanning JTA transactions over HTTP calls

Narayana: Java library for transaction processing : Summary

▸ Narayana modules

･ JTS

･ JTA

･ STM

･ LRA

･ XTS

･ RTS

▸ Slides and sources at

･ https://github.com/ochaloup/devconf2021-narayana-journey

･ https://github.com/jbosstm/quickstart

https://github.com/ochaloup/devconf2021-narayana-journey
https://github.com/jbosstm/quickstart

