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AGENDA

what is transaction management
microservices and transactions
introduction to saga pattern

Long Running Actions for MicroProfile
. DynFlow framework



TRANSACTION

An atomic unit of work where all parts either
finish with success or fail.
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A SINGLE UNIT OF WORK
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ACID TRANSACTIONS TO RESCUE
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https://martin.kleppmann.com/2015/09/26/transactions-at-strange-loop.html
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...AND NOW WHAT?

. just use ACID transactions
. but:

= using locks
» coupling microservices together
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ACID AND TWO-PHASE COMMIT
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ACID AND TWO-PHASE COMMIT
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...AND NOW WHAT?

. rollback to monolithic approach
. but:

= aqgility

= independence

= scalability

= easy to understand

« fault isolation



SAGA PATTERN

a distributed domain transaction




SAGA PATTERN

© () G 5
~—) —_— I I
O BOOK FLIGHT BOOK BUS BOOK HOTEL
IN CASE OF
FAILURE TRIGGER
COMPENSATIONS
BOOKTRIP
N oo =
~—— o R T

CANCEL FLIGHT CANCEL BUS CANCEL HOTEL



SAGA PATTERN - THE BASIC IDEA



SAGA PATTERN - THE BASIC IDEA

. break overall transaction into smaller steps



SAGA PATTERN - THE BASIC IDEA

. break overall transaction into smaller steps
. steps can be performed in atomic transactions
internally



SAGA PATTERN - THE BASIC IDEA

. break overall transaction into smaller steps
. steps can be performed in atomic transactions

internally
. Saga ensures that either the overall transaction is fully

completed or the changes are undone



SAGA PATTERN



SAGA PATTERN

. first published in 1987



SAGA PATTERN

. first published in 1987
. intended for long running transactions in databases



SAGA PATTERN

. first published in 1987
. intended for long running transactions in databases
. good fit for microservices nowadays



SAGA PATTERN

. first published in 1987

. intended for long running transactions in databases
. good fit for microservices nowadays

- two main approaches to saga



SAGA PATTERN

. first published in 1987

. intended for long running transactions in databases
. good fit for microservices nowadays

- two main approaches to saga

= orchestration



SAGA PATTERN

. first published in 1987

. intended for long running transactions in databases
. good fit for microservices nowadays

- two main approaches to saga

= orchestration
o provides a good way of controlling the flow



SAGA PATTERN

. first published in 1987

. intended for long running transactions in databases
. good fit for microservices nowadays

- two main approaches to saga

= orchestration

o provides a good way of controlling the flow
o an orchestrator tells participants what local
transactions to execute



SAGA PATTERN

. first published in 1987

. intended for long running transactions in databases
. good fit for microservices nowadays

- two main approaches to saga

= orchestration

o provides a good way of controlling the flow
o an orchestrator tells participants what local
transactions to execute

« choreography



SAGA PATTERN

. first published in 1987

. intended for long running transactions in databases
. good fit for microservices nowadays

- two main approaches to saga

= orchestration

o provides a good way of controlling the flow
o an orchestrator tells participants what local
transactions to execute
« choreography

- each local transaction publishes events that
trigger local transaction in other services



LRA: LONG RUNNING ACTIONS

. Java based

. specification proposal for long running activities

under Eclipse MicroProfile umbrella
m https://qgithub.com/eclipse/microprofile-Ira

. defines LRA coordinator

. over HTTP, LRA context is passed in HTTP headers
. definition for REST style endpoints
. implementation in project Narayana.io

e, ndardyand
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DYNFLOW

workflow engine written in Ruby
currently in use by the Foreman project
can do all sorts of stuff out of scope of this talk

= running independent steps concurrently
m polling external tasks
= and much more

support for Sagas in the form of rescue strategy

() ~dynFlow




LRA VS. DYNFLOW
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LRA VS DYNFLOW
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LONG RUNNING ACTIONS

Hotel booking

L J

Flight booking service Hotel booking service
written in Java written in Ruby
close LRA
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LONG RUNNING ACTIONS

org.eclipse.microprofile.lra.client.LRAClien

QLRA ()
@NestedLRA

@Complete ()
@Compensate ()
@Leave ()

@Status ()

0
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0
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DYNFLOW BUILDING BLOCKS

« Actions

= have three phases - plan, run and finalize
m can be composed

. Execution plans

m are generated by planning actions
m in our case a scope for transaction

. Steps

= ynits of work



ACTION EXAMPLE

BookHotel < ::Dynflow::Action
REST

run

output[:response] = post rest(input[:url])

BookTrip < ::Dynflow::Action
plan

5.times { plan action BookHotel, :url => 'http://hotel.california/book’

}
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SAGAS IN DYNFLOW

. For an execution plan we know how all its steps

finished
. If we know how to undo every single step, we can undo

the entire execution plan



ROLLBACKS IN DYNFLOW

BookHotel < ::Dynflow::Action
::Dynflow::Action::Revertible
REST

run

output[:response] = post rest(input[:url], :parse json => )

revert run
id = original output.fetch(:response, {}) [:1d]

post rest(original input[:url] + "/#{id}/compensate", :parse json =>

BookTrip < ::Dynflow::Action

::Dynflow: :Action::Revertible

plan
5.times { plan action BookHotel, :url => 'http://hotel.california/book’

}

id



DEMO
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SUMMARY

. Sagas are great solution for transactions
In microservice deployments

« if you're willing to loosen your requirements and go
from strict atomicity to eventual consistency
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e MicroProfile LRA specification: https://qgithub.com/eclipse/microprofile-Ira
e Community gitter: https://qitter.im/eclipse/microprofile-Ira
e Blog posts: Narayana LRA: implementation of saga transactions, Saga implementations

comparison
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LINKS

MicroProfile LRA specification: https://github.com/eclipse/microprofile-Ira

Community gitter: https://qitter.im/eclipse/microprofile-Ira

Blog posts: Narayana LRA: implementation of saga transactions, Saga implementations
comparison

Link to LRA demo: https://github.com/ochaloup/devconf2019-Ira

e Dynflow: https://github.com/dynflow/dynflow
e Dynflow documentation: https://dynflow.github.io

e Saga paper: https://www.cs.cornell.edu/andru/csr11/2002fa/reading/sagas.pdf
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http://dynflow.github.io/
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