&, Red Hat

TRANSACTIONAL SOLUTION
FOR MICROSERVICES

ADAM RUZICKA A ONDREJ CHALOUPKA




ABOUT US

ADAM RUZIEKA ONDREJ CHALOUPKA
e Red Hat e Red Hat
e developer of Foreman project e developer at WildFly project
e mainly Ruby e mainly Java
e github: github.com/adamruzicka e working on Narayana transaction
manager

e github: github.com/ochaloup
e twitter: @ chalda



AGENDA



AGENDA

. What is transaction management



AGENDA

. What is transaction management
. microservices and transactions



AGENDA

. What is transaction management
. microservices and transactions
. Introduction to saga pattern



AGENDA

. What is transaction management

. microservices and transactions

. Introduction to saga pattern

- Long Running Actions for MicroProfile



AGENDA

what is transaction management
microservices and transactions
introduction to saga pattern

Long Running Actions for MicroProfile
. DynFlow framework



TRANSACTION

An atomic unit of work where all parts either
finish with success or fail.




MONOLITHIC APPLICATION

Datab all Datab Il
¥
== —



LET'S CREATE A BOOKING

Confirmation

______ o_-... o > ( ) Queue )
Booking order A

2/ ©

Create order Fill shipment

e Creating order
e Filling shipment

L 4 L
- - e Sending confirmation



...AND NOW WHAT?

CRASH

nfirmation

o0— (o)

Booking order

12/ O

Create order Fill shipment

e Creating order

e Filling shipment

e Sending confirmation
! n—
= N



A SINGLE UNIT OF WORK

Confirmation

Booking order

A

o g ( )Queue )

2/

Create order

©

Fill shipment

e Creating order
e Filling shipment
e Sending confirmation



ACID TRANSACTIONS TO RESCUE

Confirmation

...... o--..., o g ( ) Queue)
Booking order A &07 4

(2 ©

Create order Fill shipment L

v r
T — — =1 juessssassan o= .
- - ......... e Creating order
......... = 107 .
ﬁ ﬁ seesasssed] e Filling shipment
ﬁ ﬁ Transaction Manager ¢ Sendlng confirmation




WORLD OF MICROSERVICES

...... (1 1 A >

Booking order Create order

Fill shipment

Confirmation

Gateway

e Creating order
e Filling shipment
e Sending confirmation




WORLD OF MICROSERVICES

Booking order

Create order Fill shipment

e . .
Confirmation

e Creating order
e Filling shipment
A e Sending confirmation




FAILURES HAPPENS

| Create order Filgghipment
Booking order CONNECTION
ERROR




Eyo_n.‘ Sof{'u‘cim'“v lqrsc. Jef'ou'uehfc[
Microseryices
Conhing oN GJ‘J\OC., lﬂ-FOFW\a.“\"

specified bua-rideden , sloy,
mplementahion of half of

{:rms ac.‘l"iovts

Martin Kleppmann: Transactions: myths, surprises and opportunities



https://martin.kleppmann.com/2015/09/26/transactions-at-strange-loop.html

...AND NOW WHAT?

. just use ACID transactions



...AND NOW WHAT?

. just use ACID transactions
. but:

= Using locks



...AND NOW WHAT?

. just use ACID transactions
. but:

= using locks
» coupling microservices together



DISTRIBUTED XA TRANSACTION

A - [—
DATABASE INSERT ]

Application Database
F

A | = DATABASE INSERT -
......... = Database
b
Application  [iiiesses = T
Trrrsiissc TRANSACTION MANAGEMENT

USING TWO-PHASE COMMIT

Transaction Manager



ACID AND TWO-PHASE COMMIT

Database

START TRANSACTION

o & Table: Order

ID ITEM QUANTITY

1 BOOK ABOUT MSA 2

DATABASE INSERT

v

Application

Transaction Manager

T uonpoesuel



ACID AND TWO-PHASE COMMIT

Database
START TRANSACTION
o & Table: Order

ID ITEM QUANTITY

A (2 .
1 BOOK ABOUT MSA 2

DATABASE INSERT

v

Application

g PREPARE
s o > ID ITEM QUANTITY
g

e Al BOOK ABOUT MSA | 2

Transaction Manager

uonoesuel)

4
+*




ACID AND TWO-PHASE COMMIT

START TRANSACTION

A

L
©

Application

DATABASE INSERT

PREPARE

---------
---------

Transaction Manager

©

COMMIT

uoroesuel)

+*

4

Database
Table: Order
ID ITEM QUANTITY
> - "
1 BOOK ABOUT MSA 2
1D ITEM QUANTITY
f—éj 1 BOOK ABOUT MSA 2
1D ITEM QUANTITY
1 BOOK ABOUT MSA 2




...AND NOW WHAT?



...AND NOW WHAT?

. rollback to monolithic approach



...AND NOW WHAT?

. rollback to monolithic approach
. but:



...AND NOW WHAT?

. rollback to monolithic approach
. but:

= aqgility



...AND NOW WHAT?

. rollback to monolithic approach
. but:

= aqgility
= independence



...AND NOW WHAT?

. rollback to monolithic approach
. but:

= aqgility
= independence
= scalability



...AND NOW WHAT?

. rollback to monolithic approach
. but:

= aqgility

= independence

= scalability

= easy to understand



...AND NOW WHAT?

. rollback to monolithic approach
. but:

= aqgility

= independence

= scalability

= easy to understand

« fault isolation



SAGA PATTERN

a distributed domain transaction




SAGA PATTERN

© () G 5
~—) —_— I I
O BOOK FLIGHT BOOK BUS BOOK HOTEL
IN CASE OF
FAILURE TRIGGER
COMPENSATIONS
BOOKTRIP
N oo =
~—— o R T

CANCEL FLIGHT CANCEL BUS CANCEL HOTEL



SAGA PATTERN - THE BASIC IDEA



SAGA PATTERN - THE BASIC IDEA

. break overall transaction into smaller steps



SAGA PATTERN - THE BASIC IDEA

. break overall transaction into smaller steps
. steps can be performed in atomic transactions
internally



SAGA PATTERN - THE BASIC IDEA

. break overall transaction into smaller steps
. steps can be performed in atomic transactions

internally
. Saga ensures that either the overall transaction is fully

completed or the changes are undone



SAGA PATTERN



SAGA PATTERN

. first published in 1987



SAGA PATTERN

. first published in 1987
. intended for long running transactions in databases



SAGA PATTERN

. first published in 1987
. intended for long running transactions in databases
. good fit for microservices nowadays



SAGA PATTERN

. first published in 1987

. intended for long running transactions in databases
. good fit for microservices nowadays

- two main approaches to saga



SAGA PATTERN

. first published in 1987

. intended for long running transactions in databases
. good fit for microservices nowadays

- two main approaches to saga

= orchestration



SAGA PATTERN

. first published in 1987

. intended for long running transactions in databases
. good fit for microservices nowadays

- two main approaches to saga

= orchestration
o provides a good way of controlling the flow



SAGA PATTERN

. first published in 1987

. intended for long running transactions in databases
. good fit for microservices nowadays

- two main approaches to saga

= orchestration

o provides a good way of controlling the flow
o an orchestrator tells participants what local
transactions to execute



SAGA PATTERN

. first published in 1987

. intended for long running transactions in databases
. good fit for microservices nowadays

- two main approaches to saga

= orchestration

o provides a good way of controlling the flow
o an orchestrator tells participants what local
transactions to execute

« choreography



SAGA PATTERN

. first published in 1987

. intended for long running transactions in databases
. good fit for microservices nowadays

- two main approaches to saga

= orchestration

o provides a good way of controlling the flow
o an orchestrator tells participants what local
transactions to execute
« choreography

- each local transaction publishes events that
trigger local transaction in other services



LRA: LONG RUNNING ACTIONS

. Java based

. specification proposal for long running activities

under Eclipse MicroProfile umbrella
m https://qgithub.com/eclipse/microprofile-Ira

. defines LRA coordinator

. over HTTP, LRA context is passed in HTTP headers
. definition for REST style endpoints
. implementation in project Narayana.io

e, ndardyand




DYNFLOW

() ~dynFlow



DYNFLOW

- workflow engine written in Ruby

() ~dynFlow



DYNFLOW

- workflow engine written in Ruby
. currently in use by the Foreman project

() ~dynFlow



DYNFLOW

workflow engine written in Ruby
currently in use by the Foreman project
can do all sorts of stuff out of scope of this talk

= running independent steps concurrently
m polling external tasks
= and much more

support for Sagas in the form of rescue strategy

() ~dynFlow




LRA VS. DYNFLOW

---------

Hotel booking Flight booking

©

B

v
©
v

i

i
©

!

Client request Client request o »
Flight booking service Hotel booking service get status / Flight booking service
written in Java written in Ruby DynFlow executor work done written in Java
close LRA
. Hotel get status /
I booking work done
v
confirm
HHHH=
confirm cesssec) B

wesssnane
sesensnee "

Hotel booking service
written in Ruby

MNarayana LRA coordinator

Long Running Actions DynFlow



LRA VS DYNFLOW

X o

4 Servicel Service2

User LRA Coordinator

| 1 1 1

: Calls service: \: :

I T > |

: :1 Joins saga [ :

| MC |

| 1 |

: : L Succeeds !

| | < o

! ! 1 Calls next service !

1 1 I >

: :l Joins saga | :

| [ T

: : : Fails

| | | ]

| 1 1 |

: :< Cancel : :

: : Compensate : \:

| I T >

: ! Compensate \: |

| T V| |

| 1 1 |
User LRA Coordinator ServaE Senvice2

VS.

User
]

: Triggers action

O

DynTI"Iow

.
>

Servicel Service2

I I

I I I
I I I
1 I I
| Starts external task_ : :
I Vad I
g Succeeds U |
Starts external task N

A

: Revert |;

Calls compensate

Service?2




LONG RUNNING ACTIONS

Hotel booking

L J

Flight booking service Hotel booking service
written in Java written in Ruby
close LRA
enlist enlist
— confirm
=
confirm e
+H11H4{=
=

Narayana LRA coordinator



LONG RUNNING ACTIONS

org.eclipse.microprofile.lra.client.LRAClien

QLRA ()
@NestedLRA

@Complete ()
@Compensate ()
@Leave ()

@Status ()

0
()
0



DYNFLOW BUILDING BLOCKS



DYNFLOW BUILDING BLOCKS

« Actions

= have three phases - plan, run and finalize
m can be composed



DYNFLOW BUILDING BLOCKS

« Actions

= have three phases - plan, run and finalize
m can be composed

. Execution plans

m are generated by planning actions
m in our case a scope for transaction



DYNFLOW BUILDING BLOCKS

« Actions

= have three phases - plan, run and finalize
m can be composed

. Execution plans

m are generated by planning actions
m in our case a scope for transaction

. Steps

= ynits of work



ACTION EXAMPLE

BookHotel < ::Dynflow::Action
REST

run

output[:response] = post rest(input[:url])

BookTrip < ::Dynflow::Action
plan

5.times { plan action BookHotel, :url => 'http://hotel.california/book’

}



SAGAS IN DYNFLOW



SAGAS IN DYNFLOW

. For an execution plan we know how all its steps
finished



SAGAS IN DYNFLOW

. For an execution plan we know how all its steps

finished
. If we know how to undo every single step, we can undo

the entire execution plan



ROLLBACKS IN DYNFLOW

BookHotel < ::Dynflow::Action
::Dynflow::Action::Revertible
REST

run

output[:response] = post rest(input[:url], :parse json => )

revert run
id = original output.fetch(:response, {}) [:1d]

post rest(original input[:url] + "/#{id}/compensate", :parse json =>

BookTrip < ::Dynflow::Action

::Dynflow: :Action::Revertible

plan
5.times { plan action BookHotel, :url => 'http://hotel.california/book’

}

id



DEMO

Hotel booking

o — A4

Client request -
Flight booking service Hotel booking service
written in Java written in Ruby

confirm

close LRA
enlist

ﬁst

confirm
g
g

T
sensnenees "]

Narayana LRA coordinator

Client request

g Flight booking

S =

sieieiiiid

v

S =
get status /
DynFlow executor work done
Hotel get status /
boaoking work done

Hotel booking service
written in Ruby

L 4

Flight booking service
written in Java



SUMMARY



SUMMARY

. Sagas are great solution for transactions
In microservice deployments



SUMMARY

. Sagas are great solution for transactions
In microservice deployments

« if you're willing to loosen your requirements and go
from strict atomicity to eventual consistency



QUESTIONS




LINKS



LINKS

e MicroProfile LRA specification: https://qgithub.com/eclipse/microprofile-Ira
e Community gitter: https://qitter.im/eclipse/microprofile-Ira
e Blog posts: Narayana LRA: implementation of saga transactions, Saga implementations

comparison



https://github.com/eclipse/microprofile-lra
https://gitter.im/eclipse/microprofile-lra
https://jbossts.blogspot.com/2017/12/narayana-lra-implementation-of-saga.html
https://jbossts.blogspot.com/2017/12/saga-implementations-comparison.html

LINKS

MicroProfile LRA specification: https://github.com/eclipse/microprofile-Ira

Community gitter: https://qitter.im/eclipse/microprofile-Ira

Blog posts: Narayana LRA: implementation of saga transactions, Saga implementations
comparison

Link to LRA demo: https://github.com/ochaloup/devconf2019-Ira

e Dynflow: https://github.com/dynflow/dynflow
e Dynflow documentation: https://dynflow.github.io

e Saga paper: https://www.cs.cornell.edu/andru/csr11/2002fa/reading/sagas.pdf



https://github.com/eclipse/microprofile-lra
https://gitter.im/eclipse/microprofile-lra
https://jbossts.blogspot.com/2017/12/narayana-lra-implementation-of-saga.html
https://jbossts.blogspot.com/2017/12/saga-implementations-comparison.html
https://github.com/ochaloup/devconf2019-lra
https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf
http://github.com/dynflow/dynflow
http://dynflow.github.io/

Q Red Hat

THANK YOU!




